Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme.
نویسندگان
چکیده
The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The three-dimensional structure of NDO revealed that several of the amino acids at the active site of the oxygenase are hydrophobic, which is consistent with the enzyme's preference for aromatic hydrocarbon substrates. Although NDO catalyzes cis-dihydroxylation of a wide range of substrates, it is highly regio- and enantioselective. Site-directed mutagenesis was used to determine the contributions of several active-site residues to these aspects of catalysis. Amino acid substitutions at Asn-201, Phe-202, Val-260, Trp-316, Thr-351, Trp-358, and Met-366 had little or no effect on product formation with naphthalene or biphenyl as substrates and had slight but significant effects on product formation from phenanthrene. Amino acid substitutions at Phe-352 resulted in the formation of cis-naphthalene dihydrodiol with altered stereochemistry [92 to 96% (+)-1R,2S], compared to the enantiomerically pure [>99% (+)-1R,2S] product formed by the wild-type enzyme. Substitutions at position 352 changed the site of oxidation of biphenyl and phenanthrene. Substitution of alanine for Asp-362, a ligand to the active-site iron, resulted in a completely inactive enzyme.
منابع مشابه
Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida.
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, alpha and beta; the alpha subunit contains a [2Fe-2S] clus...
متن کاملCharacterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8.
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed...
متن کاملAlteration of regiospecificity in biphenyl dioxygenase by active-site engineering.
Biphenyl dioxygenase (Bph Dox) is responsible for the initial dioxygenation step during the metabolism of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in the determination of the substrate specificity of biphenyl-related compounds, including polychlorinated biphenyls (PCBs). Based on crystallographic analyses of naphthalene dioxygenase (B. Kauppi, K. Lee, E. Carredano, R....
متن کاملAlteration of the substrate specificity of the angular dioxygenase carbazole 1,9a-dioxygenase.
Carbazole 1,9a-dioxygenase (CARDO) consists of terminal oxygenase (CARDO-O) and electron transport components. CARDO can catalyze specific oxygenation for various substrates: angular dioxygenation for carbazole and dibenzo-p-dioxin, lateral dioxygenation for anthracene, and monooxygenation for methylene carbon of fluorene and sulfide sulfur of dibenzothiophene. To elucidate the molecular mechan...
متن کاملAltering substrate specificity of catechol 2,3-dioxygenase from Planococcus sp. strain S5 by random mutagenesis.
c23o gene, encoding catechol 2,3-dioxygenase from Planococcus sp. strain S5 was randomly mutagenized to generate variant forms of the enzyme with higher degradation activity. Additionally, the effect of introduced mutations on the enzyme structure was analyzed based on the putative 3D models the wild-type and mutant enzymes. C23OB58 and C23OB81 mutant proteins with amino acid substitutions in c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 182 6 شماره
صفحات -
تاریخ انتشار 2000